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}2- ON THE FERIODIC NONLINEARITY AND THE MULTIPLICITY OF SOLUTIONS
'\;: Kung-Ching Chang*

(

ﬁ:: §1. Introduction

;{f Inspired by the work of Conley and Zehnder [3] on the solution of the
:',.;-.

Arnold conjecture, the author presented a different proof of their statement,

9

.
,\Cu and noticed that the periodicity of the Hamiltonian function is the essence of
1 \,‘.
A
l:ﬁ} the occurrence of multiple periodic scolutions [1-2]. The main purpose of this
e
paper is to apply the following theorem obtained in [1]) to various different
*:: problems which are studied recently by many authors in dealing with periodic
o
A nonlinearities.
o
Let H be a real Hilbert space, and let A be a bounded self-adjoint
j 2 operator defined on H. According to its spectral decomposition,
g
;f‘l H=H_ @& H,; & H_, where H,, Hg, and H_ are invariant subspaces
P
. )
’ corresponding to the positive, zero, and negative spectrum of A
:E: respectively.
-%f: Theorem 0. Suppose that A satisfies the following assumptions
e
‘) (Hy) Ay 4 Ali has a bounded inverse on H,,
W W
[ (Hy) v & dim(H_ ® Hp) < =.
"
S Let V® be a €2 compact n-manifold without boundary, and let
Y
LR
i g € clu x V“,R1) be a function having a bounded and compact differential
o
Y
?ﬁh dg(x). Assume that
:
cr W 9(Pyx,v) » —» as IPxi » if dim Hy # 0
!. .
Q.-
s
ros
v
o . . . '
;{f Also Department of Mathematics, University of Wisconsin-Madison, Madison, WI
. 53706, and Peking University, People's Republic of China.
LN
'le Supported by the U. S. Army Research Office under Contra~t o. DAALO3-87-K-
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where P, is the orthogonal projection onto Hp. Then the function

f(x,v) = %-(Ax,x) + g(x,v)
possesses at least cuplength (VM) + 1 distinct critical points.

If further, we assume that g ¢ C2(H X V,R1), and that f is
nondegenerate, then f has at least g Bi(Vn) critical points, where
B; (V") is the i*M Betti number of ;:? i=20,1,.0.,n.

Remark. In the statement of Theorem 8.3 in (1], the function g was
assumed to be C2, however, in the proof of the first conclusion, cl is
sufficient.

Most recent studies only concerned with the case where A is positive
definite, we shall give more applications where A is semidefinite, i.e., the
negative eigenspace as well as the null space are finite dimensional. They
are used to study semilinear elliptic systems and the periodic solution
problems for 2"4 grder ODE. Theorem 2 generalizes and unifies the results due
to Mawhin (7], Mawhin and Willem (8]}, Li (6], Jiang [5]}, Franks (4], Pucci and
Serrin [9,10] and Rabinowitz [11].

Periodic solution problems for Hamiltonian systems reduce to case where
A 1is unbounded and indefinite. Theorem 4 is a generalization of Theorem 2.
It implies the early results due to Conley and Zehnder [3] as special cases.
In particular, the multiple periodic soluéions of Hamiltonian systems with
resonance are studied, where the Hamiltonian functions are only periodic in
certain variables.

We thank Prof. P. H. Rabinowitz for his invitation to the Center for the

Mathematical Sciences, University of Wisconsin-Madison, and for his very kind

conversations on his interesting preprint {11].
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o §2. semi-definite functionals

A i

A

Lf: A direct consequence of Theorem 0, is the following:

{

'ij Theorem 1. Suppose that A is a self-adjoint operator satisfying (H,)
g and (HZ)' defined on a Hilbert space H. Suppose that ¢ ¢ C1(H,R1) is a

e e e =
AL
"':" .

function having a bounded and compact differential d&, and satisfies the

following periodicity ~ondition:

i)
-"“
A (P) 9 eq,++.,e,. € ker A, they are linearly independent, and
,f\ 1 r
NI .
TR T(Ty,-++,Ty) € R such that
i P
2 .
;..' X
;.. d(x + .21 ijjej) = §(x), ¥x ¢ H, v‘m‘ll"’lmr) € 2
IS =
b~ J
it
’iq and the resonance condition:
' L
oo (LL) ¥(x) » - if 1xt » » and x ¢ ker(A) N {e1,...,er} .
M
‘
[ Then the equation
r
N Ax + dd(x) =0 (2.1)
-
_?E: possesses at least r + 1 distinct solutions.
“.‘,\n.
e If further, ¢ ¢ CZ(H,R1) and all solutions of (2.1) are nondegenerate,
:Q:- then (2.1) possesses at least 2T solutions.
5
;ﬁ Proof. We consider the following functional
‘:-'
o I(x) = -
A x) = — (Ax,x) + &(x) .
o 2
.2
e, According to (P),
5
o
‘n‘,.
» r .
,-'r- J(x + ] myTyey) = J(x), ¥(mg,..eomp) € zr .
W, .; j=1
N
'&,:
h ? However, we have an orthogonal decomposition
' .
o, L
- H = ker A & (ker A)

'y =z6Ye (ker A)'
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where Z = span{eq,...,e,}, and Y = zl N ker{(A). If we restrict ourselves

on the quotient space

T x (Y @ (ker A)1)
where Tf = Z/zr(T1,...,Tr), zr(T1,...,Tr) := {(m1T1,...,mrTr)|(m1,...,mr) €
2¥}, the functionals

f(u,v) J(x) ,

and

g(u,v) $(x) ,

are well defined, where (v,u) € TF x (Y & (ker A)l) and x = u + v. The
critical point of f is a solution of (2.1). Since f and g satisfy all
conditions in Theorem 0 with Hy =Y and V = 7Y, the conclusion follows
directly. We present here an application.

Theorem 2. Let M be a compact manifold without boundary, let
(aij(x)) be a symmetric (N - r) matrix valued continuous function defined
on M, and let

ker(~A « Iy ,. + (aij(x))~) = span{pqsse+r9x}
where 0 < r < N are integers. Assume that F ¢ C1(M X RN,R1) satisfies the
following assumptions
r

(1) F(x'u + .21 miTiei) = F(xlu) v(xlu) € M X RNI v(m1l'°'lmr) € zr
i=

where e; = (0,ceeplyee,0), &= 1,2,.00r, and (Tqse++sTp) ¢ R° 1is given,
t

PN
(2) tF (x,0)l =,
u Lw(M,RN)
k k
1
(3) F(x, jz1 tjcpj(x)) + ®» as It‘ = (jz1 t§) /2 ©,

and that h ¢ C(M,RN), h = (hy,...,hy) satisfies

L B A R R e R T e A e S s e



[ )
S
™~
N [ hj(x)ax = o, i=1,2,...,r,
i~ M .
2l -
:
{ B and hj(x) =0, j=r+1,...,N. Then the elliptic system
> -Au + a(x) « u - F,(x,u) + h(x) =0 on M
a has at least r + 1 solutions, where
1 . (o]
& a(x) = .
L (a;5(x)) J nun
L}
[} .
g Proof. Let H=w'2(M,RY), & =1y + (-)"'3(x), and
- #(u) = [ ~F(x,u(x)) + <h(x) « u(x)>y -
' M
-
s
g Obviously,
L4
L4
r ker A = span{eq,...,e., Pirecorox} o
;j and ¢ ¢ c'(u,R"), having a bounded and compact differential, satisfies the
R
: conditions (P) and (LL).
Ry
N The conclusion follows immediately from Theorem 1.
ﬁj Remark 2.1. In Theorem 2, we may replace the compact manifold M Ly a
U2
,f.
‘6 smooth bounded domain § in R®, in addition to the Neumann boundary value
w,
‘o
condition
+,
- a0
'l
f
[ where v 1is the outward pointing normal of the boundary 3Q.
¥
'{ Example 2.1. M = S‘, r = N= 1. This is just the periodic solution
iy W
o problem for ODE
0)
R ..
] u + F,(t,u) = h(t) (2.2)
¥ where F ¢ c‘(s‘ X R1,R1) is periodic in u, and h ¢ C(S‘,R1) satisfies
M)
% the zero mean condition f h(t)dt = 0. Under these conditions, (2.2) has at
[ S1
, least two solutions. It was shown by Mawhin and Willem (8], Li [6] and Franks
b (4].
.
A
Y 5=
o

OO T S N 2,0 R R TR X Yo \ O
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Example 2.2. The case M = s‘, and r = N. The corresponding ODE
system was studied by Jiang [5] and Rabinowitz 111]. In this case, the
following system possesses at least N + 1 solutions

u + F(t,u) =4(t) (2.3)
where F ¢ clis?! x R, Rr") is periodic in u = (u1,...,uN), and

h e c(s',®), satisfies [ h(t)dt = 6.
1

S

Example 2.3. The case M = s', r <N, with (aij(t))(N—r)x(N-r)

positive definite. The ODE system was studied by Mawhin [7]. The system
u =~ a(t)u + F(t,u) =0

possesses at least r + 1 solutions, provided that F ¢ clis! x ”RY,RY) is

periodic in the first r wvariables (u1,...,ur), and uFu(t,u)nL°° < =,

Example 2.4. The case M =T%, r = N = 1. The problem was studied by
Pucci and Serrin [9,10]. The following equation

Au + F(x,u) =0 on T
possesses at least two solutions, provided that F ¢ C1(Tn x R1,R1), and is
periodic in .

The Neumann problem for the elliptic equation (in case r = N = 1) was
studied by Rabinowitz [11].

Remark 2.2. All the above examples deal only with functionals bounded
from below, however, Theorem 2 implies more than that. The improvements are
in two directions:

(1) The functional is semi-definite, i.e., it is bounded from below

except on a finite dimensional subspace.

(2) The resonance case is studied, it only happens when r < n.

~
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i:- §3. Indefinite functionals

In this section, we shall extend the results of §2 to indefinite

N functionals. The saddle point reduction argument will be applied.

o Let H be a Hilbert space, and let A Dbe a self-adjoint operator with
domain D(A) T B (unbounded). Assume that F is a potential operator with
i\ $ ¢ C1(H,R1), F=d¢ and ¢(8) = 0. The following assumptions are made
Y {A) 4 a < 0 < B such that ,8 £ o(A) and o(A) N [a,B] consists of at
ﬁdﬁ most finitely many eigenvalues of finite multiplicities.

v (F) F is bounded and Gateaux differentiable, with

T
ﬂﬁ,#nﬁv

1dF(u) - 9—§—§-In < 5—5-9-, ¥u ¢ H.

ALl

(D) For small ¢ > 0, with =¢ £ g(A), let V =D(|(eI + a)|1/2), assume

¥
)

that ¢ ¢ C2(V,R1)-

20l @

LA P L

5

Theorem 4. Suppose that

v 5
F I B

- (P) I eq,...,ep ¢ ker A, they are linearly independent, and I (Tq,...,Ty) €

~~

R Rr, such that

r
Q(x + j§1 ijjej) = Q(X)I V(m1,...,mr) € zr' ¥x ¢ H.

_— i - ., - vv
M) N e s
D000 RN

2vs 21 &

(LL) 8(x) » = if Ix1 > = ¥x ¢ ker AN span{eq, ... e }' .

T

L 51@ =7

&, & o

e

Then the equation

L

Ax + &'(x) =0

has at least r + 1 distinct solutions.

£o4
b

-
-
DS
A2

Proof. A saddle point reduction procedure is applied. Let

< l'. v ':,&d :a.

8 +o a
Pg = [ ag,, ©Py= £ gE,, P_ = [ 4E,
a

PN

§

s

-

o

where ({E,} 1is the spectral resolution of A, and let

AN

ol =7

O X (4 ) ( WaoH ) LG X 1 O T M Co O ALV AN
~'f‘\'f‘v n".'.‘:‘l'.‘o'. OO W0 0!‘.0. w?( ) 'fl. (X .| L LT N S RORNARRAR o.:'\"i.t'o..'t... e m_.. oy |‘:'
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Ho = PoH,  H, = P,H

Ll B AN 5

and for small ¢ > 0, =-¢ £ o(A), let

Vg = | (el + A)l"/zﬂo, v, = |(ex + a)]7V %, .

el

AeLote
a0

For each u ¢ H, we have the decomposition

. 8
CC

u=u++u0+u

L

with ug € Hg, uy € Hy. Let x = x, + xXg + x_ ¢ VvV, where

)
..?‘?;

xg = [(eX + 2)["V2,,  x, = [(e1 + &)V 2, .

PRI

We define a function on the finite dimensional space V,; as follows

£

alz) = (Ax(z) ,x(z)) + d(x(z))

N =

where x(z) = x+(z) + x_(z) +z, z = Xg € VO' and xt(z) are the solutions

v >
P l'.'t:‘..":.'!. <

of the equations

o)

X, = =(el + A)"Pt(eI + F)(xy + x_ + z2) .

IR
Wy

We shall prove that

4 84 4,
“.l'l
LN

ey

r
1° x,(z + jz1 Tje) = x4(2z), ¥z ¢ Vg

55

.l ?- f- “l {

vt
.

LN

In fact,

l“-

:

X
Py(el + F)(xy + x_ + 2z + ] Tyej) = Pplel + F)(xy + x_ + 2)
j=1

L,

< ;>

P

"-
=

73
A

therefore

x,(2) = x4 (2 + z Tjej) .
j=1

a(z).

e r
N " 2 a(z + Z Tjej)

+$§ j=1

Claim:




A Adi AN albl ahd ahd oL o]

r r r r
1
a(z + Z Tjej) =3 (Ax(z + f Tjej). x(z + z Tjej)) + d(x(z + 2 'rjej))
i= 3=1 =1 3=1
1 r r
=E (Ax(z),x(z) + 321 Tjej) + d(x(z) + 3.2-1 Tje])

= 2 (Ax(z),x(2)) + 8(x(2))

= a(z) .
3° a satisfies the (PS) condition on TF x (Y ® N(A)l) M Vg where Y = N(A)
N span{e1,...,er}l.

Claim: Suppose that {zk} is a sequence along which

{a(zk)} is bounded, and na'(zk)u = 0o(1) .

Accord.ng to Chang {1, p. 105],
nAx(zk) + F(x(zk))llH = o(1) .

Let Q be the orthogonal projection onto Y, which is considered as a
subspace of the Hilbert space H=Yve® N(A)l. Thus on the space H,

(I -~ 9)x(zK) = -a~T(1 - Q)F(x(zK)) + o(1) ,
since F is bounded, #(I - Q)x(zk)u is bounded. Noticing

1

p(ox(25)) = o(x(zK)) = [ (Flxg (X)), (1 - Qix(zF)ae
0

1
= a(zX) - %-(Ax(zk),x(zk)) - [ (Fxg (X)), (1 - Q)x(zFDae
0
where
xe(z) = ((1 = £)I + tQ)x(2) ,
and

(Ax(2X),x(zX)) = (Ax(zK), (I - Q)x(zK)) = (=F(x(2K)) + o(1), (I - Q)x(z¥)) ,

O(Qx(zk)) must be bounded. According to the condition (LL), Qx(zk) is

h al * .. Al “fid -
Lol ok a® aat guv Safh thet Shol okl btk Wb ddh i 40 TR A aan e A4 A A e ket Sl Al AN e i VRl Glb sl el tad el Gad Bah Aol ok Bl ek B8 o8 ool Son o |
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bounded. The compactness of zX now follows from the boundedness of x(z

k)
and the finiteness of the dimension of Voo
4° If we decompose Vg into span{eq,...,e.} ® (Y @ N(A)l) N Vg,
z=v +w, (V,W) ¢ span{e,,...,er} ® (Y @ N(A)l) n V0 ’
and let

glw,v) = — (Af(w + v),E(w + Vv)) + d(x(w + v))

N

where
£(z) = x,(z) + x_(2)
then g is well defined on TF x (Y ® N(A)l) N Vg, and
dg(w,v) = FoF(x(w + v))
which is bounded and then is compact on finite dimensional manifold. The
function a(z) now is written in the following form:
a(w,v) = % (Aw,w) + g(w,v) .
Noticing that F is bounded, 1(g(2)1 is always bounded. 1If we denote y
the projection of w onto Y we have
gy, v) = 3 (RE(Y + V),E(y + v)) + 0(y) + [8(E(y + v) +y + v) = 8(y)] .
The first term and the third term are bounded, therefore
g{y,v) + t» as iyl + = .
The function a(w,v) satisfies all assumptions of Theorem 0. Theorem 4 is
proved.
Now we study the periodic solutions of the Hamiltonian systems, in which
the Hamiltonian functions are periodic in some of the variables.
We use the following notations: p,q ¢ RN,
P = (PysesesPy), q = (q1,...,qN), 1¢<r<s<t<N,
P = (Pysecerpp)s @ = (Qq,000,qp) o

~ ~
p = (Pr+1:---:ps)o q = (9r+1!""qs) ’

-10-
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v

We assume
(I) a(t), B(t), C(t) and D(t)
on S‘, of order

and (N - T) x (N - T)

invertible.

(II) H e c2(s! x r2N,R')

and H" is bounded.
T a
(III) Let span{¢1,...,¢m} = ker(- J E; - (C(t) & D(t))) where
v O ~Ing
J = + and g@q,.¢.,9n are linearly independent. And
In-7 0
H(t, ) Ti95) » 2o as |x] = (r% + oo + Ti) 2, .

j=1

(IV) c,d € c(s!,RT), with ¢ =

S1

P = (PT+1I"'IPN)I

respectively.

pr)r q =

<
)

are symmetric continuous matrix function

(S - r) x (S -r), (T - s)

Let X

is periodic in the

(c1,...,cT),

[ eyt = [ a4t) =0,
1

S

i= 1,..-,1‘, s + 1,...'T, j = 1,-.-,5 .

We define a Hamiltonian function as follows

1

~ ~ 1 A 1 v v . - v
H(t,p,q) = E-A(t>p » p + E'B(t’q cqt+s (C{t)p » p + Dit)g « q)

T -
+ ] (ci(t)p;y + dj(t)gy) + H(t,p,q) .
i=1

Theorem S.

d

~

Under conditions (I)-(IV), the Hamiltonian system

(HS) - — 2= Hz(tlz)l

dat

has at least r + T + 1 periodic solutions, where z = (p,q) ¢ RZN-

.

OOOON0
l’|.|.|~“.“‘.g

T Ww““ﬁ"i""

(qs+1:'°~qu) ’

(qT+1'ooo,qN) .

x (T -s8), (N=-T)x (N-1T)

[ A(t), and B=[ 3(t) be

g' 51

following variables P.3,D,q,

d = (d4,+++,dp) and

t es!
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$\ Proof. Let
N 2root
*‘

o]

5 )~

A(t)

i

.I

~, (o]

v,

>, X C(t)

-.' ) A(t) = (o]
o o

%

o B(t)

R

W D
- (t)

and let (the subscripts on J coincide with those on p)
A d
B, = - —_— -
:} A (-J at A(E))
"\_"
- A(t) (o} v c(t)
o d ~ d s 4 a
O = (-g-=) 8 |-FT— - ))e(—J—- 6 (- — -
4 dt
dt at 0 B(t) de pce))) .

'_'::: We have
b o PR £ X0

= (p/q) € ker|-J — - .
. dat
! o
-~ g = Alt)p
[ ==>3 2
,::-‘ p=20,

C
o

& a=[ A(s)as « ¢ + d, with g(2m) = g(0) ,
L)
‘.ﬂ: ==> 0
Y
: p=c<,
i,
- (i.e., with A « © = 0). According to the assumption I, ¢& = 9. We have
h:d
:: g a(t)
ol ker|-3 = - = {(8,d)|d ¢ R°"T} = RS°T .,
o dt o)
Y
8. Similarly,
c"'l
N o
) -~
: ker|-J g? - = {(e,e)le € RT-S} x RT-S |
R, B(t)
K Thus |
';. |
‘,:::, ker(A) = R?F @ p°F @ RIS @ span{q;‘,...,‘pm} .
i
\ '. |
o8
W

o -12-
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Let
N T
8(z) = [ [H(t,z(t)) + [ [c;(t)p;(t) + d;(t)gz(t)]}dat .
1 i=1

S
Then all the assumptions (a), (F), (D}, (P) and (LL) are satisfied. The proof

is complete. A

Example 3.1. If the Hamiltonian function H ¢ CZ(S1 x RZN,R1) is

periodic in each variable, then (HS) has at least 2N + 1 periodic solutions.

This is the case r =s =T = N.

0 This result related to the Arnold conjecture, was first obtained by
-
l“:
:}: Conley and Zehnder [3], see also Chang [2].
PIARY
NS 2,1 2N o1 ; s adie 4
& Example 3.2. If H ¢ C°(S x R°,R’), where H is periodic in the
®
e comporients of q, and that there is an R > 0 such that for p{ > R,
- 1
D H&ma)=3@-p+a'p
{:ﬁ: where a ¢ Rp, and M is a symmetric nonsingular time independent matrix,

then the corresponding (HS) possesses at least N + 1 distinct periodic

XN
Eﬁf: solutions.
b This is the case r =0, S =T = N.
)
. This is a result obtained by Conley and Zehnder {3], see also P. H.
o
WYy , ,
; N Rabinowitz {11].
g
G Example 3.3. Let H ¢ c2(s! x R4,R') be periodic in (p,,qq). Assume
9
¢ that 3 R > 0 such that
M 1 / 2 2
$ H(t,pppz.q«,,qz) = 3 (Cp% + dq%) + A Pz + qz
15
i_j
9.
:;: for /p§ + qg > R, where cd = k2 > 0 for some k ¢ Z, and A > 0. Then
-
=
o the corresponding (HS) possesses at least 3 periodic solutions.
~
e
1-\
ey
a. ‘
)
Y
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"N 13
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In fact,
c 0
ker(-J g;—— o = span{(— /Cg sinkt,coskt],( /rg coskt,sinkt)}

it follows
max{3 11x2 + a2) > £ (-Aysinkt + A,coskt)? + (A,coskt + A,sinkt)?
e ’ 1 2' 2 ¢ 1 2 1608 283

> minf2 L1102 «22) .

Therefore
% / d . .
H(t,0, < (-X151nkt + Xpcoskt),0, (X coskt + Aysinkt))
’ min{V '2' r1}VA3 + K; + 4w, Or + -= ,
as Af + Ai + o,

Remark. In the assumption (I), if the operators A and B are

singular, then

(p,qa) ¢ ker -3¢ - <==> pc ker A, q=[ A(s)ds p+4d .
0 0

Thus,

ker|(-J —=— - ={(6,d)]|d ¢ T} @ {(c,[ A(s)as ¢)|c e kxer A}.
0 0

Similarly,

0 t ~ -~ ~ ~
- = {(2,0)]¢ ¢ RT™S} @ {(f B(s)dsd,d)|d ¢ ker B}.
B(t) 0

-J =—
ker at

In order to apply Theorem 5, the assumption III is replaced by
~ t ~ t - ~ m
H(t,c + [ A(s)dsc + [ B(s)dsd +d + ) Tig4(t)) > 2=,
0 0 =1
as |S| + |a| + |1| » », where T ¢ ker R, d € ker B, and T ¢ R'. The same
theorem holds.

Example 3.4. Let H e c2(s! x R4,R') be periodic in (p4y,qq,q3)-

Assume that T R > 0 such that
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for ip2| > R, where A > 0 is a constant, then the corresponding (HS)

-‘-

possesses at least 4 periodic solutions.

In fact,

i g gu 3
AR

=7

H(t,p1,p2.q1.q'z) =1 A1+ c? s to, as |c| » = .

3 3
£ 4

v {()LQ

N

Nt s 4
S
Lo,

)
sl@le

L)
oY

.\,.,..4
P
v YL

PR 2 DS VAP P s
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